Using the same data as the gdverse
opgd vignette. Since the spc
function in CISP requires
all input variables to be continuous, only continuous variables are
retained in the data:
ndvi = gdverse::ndvi
ndvi
## # A tibble: 713 × 7
## NDVIchange Climatezone Mining Tempchange Precipitation GDP Popdensity
## <dbl> <chr> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 0.116 Bwk low 0.256 237. 12.6 1.45
## 2 0.0178 Bwk low 0.273 214. 2.69 0.801
## 3 0.138 Bsk low 0.302 449. 20.1 11.5
## 4 0.00439 Bwk low 0.383 213. 0 0.0462
## 5 0.00316 Bwk low 0.357 205. 0 0.0748
## 6 0.00838 Bwk low 0.338 201. 0 0.549
## 7 0.0335 Bwk low 0.296 210. 11.9 1.63
## 8 0.0387 Bwk low 0.230 236. 30.2 4.99
## 9 0.0882 Bsk low 0.214 342. 241 20.0
## 10 0.0690 Bsk low 0.245 379. 42.0 7.50
## # ℹ 703 more rows
ndvi = dplyr::select(ndvi,-c(Climatezone,Mining))
ndvi
## # A tibble: 713 × 5
## NDVIchange Tempchange Precipitation GDP Popdensity
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.116 0.256 237. 12.6 1.45
## 2 0.0178 0.273 214. 2.69 0.801
## 3 0.138 0.302 449. 20.1 11.5
## 4 0.00439 0.383 213. 0 0.0462
## 5 0.00316 0.357 205. 0 0.0748
## 6 0.00838 0.338 201. 0 0.549
## 7 0.0335 0.296 210. 11.9 1.63
## 8 0.0387 0.230 236. 30.2 4.99
## 9 0.0882 0.214 342. 241 20.0
## 10 0.0690 0.245 379. 42.0 7.50
## # ℹ 703 more rows
system.time({
g = cisp::spc(ndvi,cores = 6)
})
## user system elapsed
## 0.84 0.20 21.50
g
## *** Spatial Pattern Correlation
##
## | xv | yv | correlation |
## |:-------------:|:-------------:|:-----------:|
## | Precipitation | NDVIchange | 0.39517 |
## | Tempchange | NDVIchange | 0.01905 |
## | Popdensity | NDVIchange | 0.00483 |
## | GDP | NDVIchange | -0.02158 |
## | Precipitation | Tempchange | 0.07679 |
## | NDVIchange | Tempchange | 0.04977 |
## | Popdensity | Tempchange | 0.01516 |
## | GDP | Tempchange | -0.01466 |
## | NDVIchange | Precipitation | 0.35303 |
## | Popdensity | Precipitation | 0.01140 |
## | Tempchange | Precipitation | -0.00265 |
## | GDP | Precipitation | -0.02745 |
## | Popdensity | GDP | 0.29824 |
## | Tempchange | GDP | 0.09282 |
## | NDVIchange | GDP | 0.08061 |
## | Precipitation | GDP | 0.04213 |
## | GDP | Popdensity | 0.15481 |
## | Tempchange | Popdensity | 0.04483 |
## | NDVIchange | Popdensity | 0.00442 |
## | Precipitation | Popdensity | -0.07190 |
The results are visualized in a default network graph style:
But the results can also be plotted using the classic correlation coefficient matrix visualization style: