--- title: "Information Consistency-Based Measures for Spatial Association" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{icm} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ## 1. The principle of the information consistency-based measures $$ I_{N}\left(d,s\right) = \frac{I \left(d,s\right)}{I \left(d\right)} = \frac{I \left(d\right) - I \left(d \mid s\right)}{I \left(d\right)} = 1 - \frac{\sum_{s_i \in S}\sum_{x \in V_d} p\left(s_i,x\right) \log p\left(x \mid s_i\right)}{\sum_{x \in V_d} p\left(x\right) \log p\left(x\right)} $$ where $p\left(x\right)$ is the probability of observing $x$ in $U$, $p\left(s_i,x\right)$ is the probability of observing $s_i$ and $x$ in $U$, and $p\left(x \mid s_i\right)$ is the probability of observing $x$ given that the stratum is $s_i$. ## 2. Example ```r install.packages("itmsa", dep = TRUE) install.packages("gdverse", dep = TRUE) ``` ``` r library(itmsa) ``` ``` r ntds = gdverse::NTDs ntds$incidence = sdsfun::discretize_vector(ntds$incidence, 5) itm(incidence ~ watershed + elevation + soiltype, data = ntds, method = "icm") ## # A tibble: 3 × 3 ## Variable Iv Pv ## ## 1 watershed 0.445 0 ## 2 elevation 0.390 0 ## 3 soiltype 0.210 0 ```