Package: sdsfun 0.7.0

Wenbo Lv

sdsfun: Spatial Data Science Complementary Features

Wrapping and supplementing commonly used functions in the R ecosystem related to spatial data science, while serving as a basis for other packages maintained by Wenbo Lv.

Authors:Wenbo Lv [aut, cre, cph]

sdsfun_0.7.0.tar.gz
sdsfun_0.7.0.zip(r-4.5)sdsfun_0.7.0.zip(r-4.4)sdsfun_0.7.0.zip(r-4.3)
sdsfun_0.7.0.tgz(r-4.4-x86_64)sdsfun_0.7.0.tgz(r-4.4-arm64)sdsfun_0.7.0.tgz(r-4.3-x86_64)sdsfun_0.7.0.tgz(r-4.3-arm64)
sdsfun_0.7.0.tar.gz(r-4.5-noble)sdsfun_0.7.0.tar.gz(r-4.4-noble)
sdsfun_0.7.0.tgz(r-4.4-emscripten)sdsfun_0.7.0.tgz(r-4.3-emscripten)
sdsfun.pdf |sdsfun.html
sdsfun/json (API)
NEWS

# Install 'sdsfun' in R:
install.packages('sdsfun', repos = c('https://stscl.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/stscl/sdsfun/issues

Pkgdown:https://stscl.github.io

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

spatial-data-analysisspatial-data-scienceopenblascppopenmp

6.30 score 13 stars 6 packages 6 scripts 646 downloads 33 exports 39 dependencies

Last updated 1 hours agofrom:01687705da. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 12 2024
R-4.5-win-x86_64OKDec 12 2024
R-4.5-linux-x86_64OKDec 12 2024
R-4.4-win-x86_64OKDec 12 2024
R-4.4-mac-x86_64OKDec 12 2024
R-4.4-mac-aarch64OKDec 12 2024
R-4.3-win-x86_64OKDec 12 2024
R-4.3-mac-x86_64OKDec 12 2024
R-4.3-mac-aarch64OKDec 12 2024

Exports:%>%check_tbl_nadiscretize_vectordummy_tbldummy_vecformula_varnamefuzzyoverlaygenerate_subsetsgeodetector_qhclustgeo_discinverse_distance_swmloess_optnummoran_testnormalize_vectorrm_lineartrendsf_coordinatessf_distance_matrixsf_geometry_namesf_geometry_typesf_gk_proj_cgcs2000sf_utm_proj_wgs84sf_voronoi_diagramspade_psdspdep_contiguity_swmspdep_distance_swmspdep_lmtestspdep_nbspdep_skaterspvarssh_teststandardize_vectortbl_all2inttbl_xyz2mat

Dependencies:bootclassclassIntcliDBIdeldirdigestdplyre1071fansigenericsgeosphereglueKernSmoothlatticelifecyclemagrittrMASSpanderpillarpkgconfigproxypurrrR6RcppRcppArmadillorlangs2sfspspDataspdeptibbletidyselectunitsutf8vctrswithrwk

Readme and manuals

Help Manual

Help pageTopics
check for NA values in a tibblecheck_tbl_na
discretizationdiscretize_vector
transforming a category tibble into the corresponding dummy variable tibbledummy_tbl
transforming a categorical variable into dummy variablesdummy_vec
get variable names in a formula and dataformula_varname
spatial fuzzy overlayfuzzyoverlay
generate subsets of a setgenerate_subsets
only geodetector q-valuegeodetector_q
hierarchical clustering with spatial soft constraintshclustgeo_disc
construct inverse distance weightinverse_distance_swm
determine optimal spatial data discretization for individual variablesloess_optnum
test global spatial autocorrelationmoran_test
normalizationnormalize_vector
remove variable linear trend based on covariaterm_lineartrend
extract locationssf_coordinates
generates distance matrixsf_distance_matrix
sf object geometry column namesf_geometry_name
sf object geometry typesf_geometry_type
generates cgcs2000 Gauss-Kruger projection epsg coding charactersf_gk_proj_cgcs2000
generates wgs84 utm projection epsg coding charactersf_utm_proj_wgs84
generates voronoi diagramsf_voronoi_diagram
only spade power of spatial determinantspade_psd
constructs spatial weight matrices based on contiguityspdep_contiguity_swm
constructs spatial weight matrices based on distancespdep_distance_swm
spatial linear models selectionspdep_lmtest
construct neighbours listspdep_nb
spatial c(k)luster analysis by tree edge removalspdep_skater
spatial variancespvar
test explanatory power of spatial stratified heterogeneityssh_test
standardizationstandardize_vector
convert discrete variables in a tibble to integerstbl_all2int
convert xyz tbl to matrixtbl_xyz2mat