Title: | Spatial Empirical Dynamic Modeling |
---|---|
Description: | Integrates empirical dynamic modeling (EDM) with geospatial cross-sectional data to analyze causality via geographical convergent cross mapping (GCCM) described in Gao et al. (2023) <doi:10.1038/s41467-023-41619-6>. |
Authors: | Wenbo Lv [aut, cre, cph] |
Maintainer: | Wenbo Lv <[email protected]> |
License: | GPL-3 |
Version: | 1.1 |
Built: | 2024-12-17 16:28:31 UTC |
Source: | https://github.com/stscl/spEDM |
geographical convergent cross mapping
gccm( cause, effect, data, libsizes, E = 3, nb = NULL, RowCol = NULL, trendRM = TRUE )
gccm( cause, effect, data, libsizes, E = 3, nb = NULL, RowCol = NULL, trendRM = TRUE )
cause |
Name of causal variable. |
effect |
Name of effect variable. |
data |
The observation data, must be |
libsizes |
A vector of library sizes to use. |
E |
(optional) The dimensions of the embedding. |
nb |
(optional) The neighbours list. |
RowCol |
(optional) Matrix of selected row and cols numbers. |
trendRM |
(optional) Whether to remove the linear trend. |
A data.frame
.
columbus = sf::read_sf(system.file("shapes/columbus.gpkg", package="spData")[1], quiet=TRUE) gccm("HOVAL", "CRIME", data = columbus, libsizes = seq(5,45,5))
columbus = sf::read_sf(system.file("shapes/columbus.gpkg", package="spData")[1], quiet=TRUE) gccm("HOVAL", "CRIME", data = columbus, libsizes = seq(5,45,5))