Title: | Spatial Empirical Dynamic Modeling |
---|---|
Description: | Analyze causality in geospatial data using empirical dynamic modeling (EDM) through geographical convergent cross mapping (GCCM) by Gao et al. (2023) <doi:10.1038/s41467-023-41619-6> and multispatial convergent cross mapping (multispatialCCM) by Clark et al. (2015) <doi:10.1890/14-1479.1>. |
Authors: | Wenbo Lv [aut, cre, cph] |
Maintainer: | Wenbo Lv <[email protected]> |
License: | GPL-3 |
Version: | 1.3 |
Built: | 2025-01-18 11:22:00 UTC |
Source: | https://github.com/stscl/spEDM |
geographical convergent cross mapping
## S4 method for signature 'sf' gccm( data, cause, effect, libsizes, E = 3, tau = 1, k = E + 1, nb = NULL, trendRM = TRUE, progressbar = TRUE ) ## S4 method for signature 'SpatRaster' gccm( data, cause, effect, libsizes, E = 3, tau = 1, k = E + 3, RowCol = NULL, trendRM = TRUE, progressbar = TRUE )
## S4 method for signature 'sf' gccm( data, cause, effect, libsizes, E = 3, tau = 1, k = E + 1, nb = NULL, trendRM = TRUE, progressbar = TRUE ) ## S4 method for signature 'SpatRaster' gccm( data, cause, effect, libsizes, E = 3, tau = 1, k = E + 3, RowCol = NULL, trendRM = TRUE, progressbar = TRUE )
data |
The observation data. |
cause |
Name of causal variable. |
effect |
Name of effect variable. |
libsizes |
A vector of library sizes to use. |
E |
(optional) The dimensions of the embedding. |
tau |
(optional) The step of spatial lags. |
k |
(optional) Number of nearest neighbors to use for prediction. |
nb |
(optional) The neighbours list. |
trendRM |
(optional) Whether to remove the linear trend. |
progressbar |
(optional) whether to print the progress bar. |
RowCol |
(optional) Matrix of selected row and cols numbers. |
A list.
xmap
cross-mapping prediction outputs
varname
names of causal and effect variable
columbus = sf::read_sf(system.file("shapes/columbus.gpkg", package="spData")[1], quiet=TRUE) g = gccm(columbus, "HOVAL", "CRIME", libsizes = seq(5,45,5)) g plot(g, ylimits = c(0,0.65))
columbus = sf::read_sf(system.file("shapes/columbus.gpkg", package="spData")[1], quiet=TRUE) g = gccm(columbus, "HOVAL", "CRIME", libsizes = seq(5,45,5)) g plot(g, ylimits = c(0,0.65))