Package 'sshicm'

Title: Information Consistency-Based Measures for Spatial Stratified Heterogeneity
Description: Spatial stratified heterogeneity (SSH) denotes the coexistence of within-strata homogeneity and between-strata heterogeneity. Information consistency-based methods provide a rigorous approach to quantify SSH and evaluate its role in spatial processes, grounded in principles of geographical stratification and information theory (Bai, H. et al. (2023) <doi:10.1080/24694452.2023.2223700>; Wang, J. et al. (2024) <doi:10.1080/24694452.2023.2289982>).
Authors: Wenbo Lv [aut, cre, cph]
Maintainer: Wenbo Lv <[email protected]>
License: GPL-3
Version: 0.2.0
Built: 2025-01-16 05:55:17 UTC
Source: https://github.com/stscl/sshicm

Help Index


Measurement of Spatial Stratified Heterogeneity Based on Information Consistency for Continuous Variables

Description

Measurement of Spatial Stratified Heterogeneity Based on Information Consistency for Continuous Variables

Usage

sshic(d, s, seed = 42, permutation_number = 999, bin_method = "Sturges")

Arguments

d

The target variable.

s

The stratification.

seed

(optional) Random number seed, default is 42.

permutation_number

(optional) Number of Random Permutations, default is 999.

bin_method

(optional) Histogram binning method for probability density estimation, default is Sturges.

Value

A two-element numerical vector.

Examples

baltim = sf::read_sf(system.file("extdata/baltim.gpkg",package = "sshicm"))
sshic(baltim$PRICE,baltim$DWELL)

Information Consistency-Based Measures for Spatial Stratified Heterogeneity

Description

Information Consistency-Based Measures for Spatial Stratified Heterogeneity

Usage

sshicm(
  formula,
  data,
  type = c("IC", "IN"),
  seed = 42,
  permutation_number = 999,
  bin_method = "Sturges"
)

Arguments

formula

A formula.

data

A data.frame, tibble or sf object of observation data.

type

(optional) Measure type, default is IC.

seed

(optional) Random number seed, default is 42.

permutation_number

(optional) Number of Random Permutations, default is 999.

bin_method

(optional) Histogram binning method for probability density estimation, default is Sturges.

Value

A tibble.

Examples

## Not run: 
# This code may take a bit longer to execute:
baltim = sf::read_sf(system.file("extdata/baltim.gpkg",package = "sshicm"))
sshicm(PRICE ~ .,baltim,type = "IC")
cinc = sf::read_sf(system.file("extdata/cinc.gpkg",package = "sshicm"))
sshicm(THEFT_D ~ .,cinc,type = "IN")

## End(Not run)

Measurement of Spatial Stratified Heterogeneity Based on Information Consistency for Nominal Variables

Description

Measurement of Spatial Stratified Heterogeneity Based on Information Consistency for Nominal Variables

Usage

sshin(d, s, seed = 42, permutation_number = 999)

Arguments

d

The target variable.

s

The stratification.

seed

(optional) Random number seed, default is 42.

permutation_number

(optional) Number of Random Permutations, default is 999.

Value

A two-element numerical vector.

Examples

cinc = sf::read_sf(system.file("extdata/cinc.gpkg",package = "sshicm"))
sshin(cinc$THEFT_D,cinc$MALE)